Рекомендации по армированию железобетонных конструкций

Изделия для бетонных и железобетонных сооружений

КЖ делятся на:

  • Детали из стальной арматуры, например, отдельные стержни и объекты, сетки, стальные опоры пространственного типа.
  • Закладные.
  • Устройства, применяемые для фиксации.
  • Механизмы для строповки систем.

Когда какие-либо характеристики или параметры типовых сооружений не подходят к установленным требованиям, допустимо использование индивидуальных. Они выполняются наиболее унифицированными в размерах, диаметрах поперечной и продольной арматур, шагами.

Кроме этого, компоненты выполняют таким образом, чтобы они:

  • были транспортабельны;
  • легко складировались;
  • укладывались в подходящий шаблон.

В пределах ряда КЖ и составляющих минимизируют численность размерных типов, сводя их к единому стандарту.

При планировке чаще всего используют типовые арматурные детали, которые разработаны соответственно с госстандартами и другими видами нормативной документации, подробно изложенной в Руководстве по проектированию бетонных и железобетонных (ЖБ) конструкций по СНиП.

Мировой опыт использования технологии преднапряжения

В мире монолитный железобетон большей частью является предварительно напряженным. В первую очередь, таким способом возводятся большепролетные сооружения, жилые здания, плотины, энергетические комплексы, телебашни и многое другое. Телебашни из монолитного преднапряженного железобетона выглядят особенно эффектно, став достопримечательностями многих стран и городов. Телебашня в Торонто является самым высоким в мире отдельно стоящим железобетонным сооружением. Ее высота 555 м.

Поперечное сечение башни в виде трилистника оказалось весьма удачным для размещения напрягаемой арматуры и бетонирования в скользящей опалубке. Ветровой опрокидывающий момент, на который рассчитана эта башня, составляет почти полмиллиона тоннометров при собственном весе наземной части башни чуть более 60 тыс. т.

В Германии и в Японии из монолитного преднапряженного железобетона широко строятся резервуары яйцевидной формы для очистных сооружений. К настоящему времени такие резервуары возведены суммарной емкостью более 1,2 млн.куб.м. Отдельные сооружения этого типа имеют емкость от 1 до 12 тыс.куб.м.

За рубежом все более широкое применение находят монолитные перекрытия увеличенного пролета с натяжением арматуры на бетон. Только в США таких конструкций ежегодно возводится более 10 млн.куб.м. Значительный объем таких перекрытий сооружается в Канаде.

В последнее время напрягаемая арматура в монолитных конструкциях все чаще применяется без сцепления с бетоном, т.е. не производится инъецирование каналов, а арматуру от коррозии или защищают специальными защитными оболочками, или обрабатывают антикоррозионными составами. Таким образом возводятся мосты, большепролетные здания, высотные сооружения и другие подобные объекты.

Помимо традиционных строительных целей монолитный предварительно-напряженный железобетон нашел широкое применение для корпусов реакторов и защитных оболочек атомных электростанций. Суммарная мощность АЭС в мире превышает 150 млн. кВт, из них мощность станций, корпуса реакторов и защитные оболочки которых построены из монолитного преднапряженного железобетона, составляет почти 40 млн. кВт. Защитные оболочки для реакторов АЭС стали обязательными. Именно отсутствие такой оболочки явилось причиной чернобыльской катастрофы.

Ярким примером строительных возможностей преднапряженного железобетона являются морские платформы для добычи нефти. В мире таких грандиозных сооружений возведено более двух десятков.

Построенная в 1995 г. в Норвегии платформа «Тролл» имеет полную высоту 472 м, что в полтора раза выше Эйфелевой башни. Платформа установлена на участке моря с глубиной более 300 м и рассчитана на воздействие ураганного шторма с высотой волны 31,5 м. На ее изготовление было израсходовано 250 тыс.куб.м. высокопрочного бетона, 100 тыс. т обычной стали и 11 тыс. т напрягаемой арматурной стали. Расчетный срок службы платформы 70 лет.

Традиционно обширной областью применения предварительно напряженного железобетона является мостостроение. В США, например, сооружено более 500 тысяч железобетонных мостов с различными пролетами. За последнее время там построено более двух десятков вантовых мостов длиной 600-700 м с центральными пролетами от 192 до 400 м. Из предварительно-напряженного железобетона сооружаются внеклассные мосты, которые строятся по индивидуальным проектам. Мосты пролетом до 50 м возводятся в сборном варианте из железобетонных преднапряженных балок.

Достижения в мостостроении из преднапряженного железобетона имеются и в других странах. В Австралии, в г. Брисбен, построен балочный мост с центральным пролетом 260 м, наибольшим среди мостов этого типа. Вантовый мост «Баррнос де Луна» в Испании имеет пролет 440, «Анасис» в Канаде — 465, мост в Гонконге — 475 м. Арочный мост в Южной Африке имеет наибольший пролет — 272 м. Мировой рекорд для вантовых мостов принадлежит мосту «Нормандия», где пролет 864 м. Ненамного уступает ему мост «Васко де Гама» в Лиссабоне, построенный к Всемирной выставке ЭКСПО-98. Общая протяженность этого мостового перехода превышает 18 км. Основные его несущие конструкции — пилоны и пролетные строения — выполнены из бетона с прочностью при сжатии более 60 МПа. Гарантированный срок службы моста 120 лет по критерию долговечности бетона (в России же в последнее время большепролетные мосты чаще строятся из стали).

Разработка отдельных звеньев

Наименьшие сечения частей из разносоставных материалов, которые определяются специалистами, вычисляя воздействие и определенные группы предельных состояний, выполняют по экономическому обоснованию. Анализируют необходимость индивидуализации форм опалубки, армирования и назначают технологическую методологию по разработке и изготовлению отдельных деталей КЖ.

Габариты бетонных и ж/б компонентов сборного типа назначают с учетом грузоподъемных способностей на строительстве и заводе-производителе. При индивидуальном выполнении учитывают условия перевозок.

Пособие по конструированию железобетонных конструкций включает положения, рекомендации, примеры по расчету и конструированию изделий.

Для проекции отдельных элементов используют новейшие разработки в сфере инновационных технологий – это компьютерные программы, приложения, надстройки на базовое ПО.

Наиболее известны:

«Сапфир»

Это система для архитектурной проектировки, образования форм, расчетов, которая помогает строителям:

  • моделировать большие, малые архитектурные формы жилых и общественных многоэтажек, сооружений разного назначения;
  • оформлять документы решений по проектам, получая чертежи с учетом СПДС;
  • проанализировать модель для упрочнения расчетов.

Планирование сложных объектов делают просто и наглядно с помощью графических средств, на базе параметрического трехмерного моделирования, соответствующего нормативной базе.

«Мономах»

Программный комплекс разработан для проектирования зданий, строений с планами произвольной конфигурации, с использованием ж/б деталей. В ней можно формировать рабочие чертежи:

  • балки;
  • колонны;
  • фундаменты;
  • подпорные стены;
  • схемы армирования плит, стен.

ПО сертифицировано по стандартам соответствия РФ.

«ЭСПРИ»

Программа является электронным помощником инженера, включая серию информационных и программ для расчета ежедневного применения. Он состоит из нескольких видов приложений, которые дают возможность производить автоматические вычисления многоплановых индивидуальных задач, возникающих во время инженерной, проектной работы, изысканий, не вписывающихся в структуру большинства платформ.

Для 3D моделирования конструкционных моделей используют современные программы:

  • AutoCAD;
  • NanoCAD;
  • ZWCAD 2018 Professional;
  • Blender;
  • form•Z jr.

Они служат дополнительными инструментами для специалистов в области строительства – инженеров, конструкторов, дизайнеров.

Недостатки

Состояние предварительного напряжения в материале достигается спецоборудованием, точными расчетами, трудоемким конструированием и затратным производством. Продукция требует бережного хранения, транспортировки и монтажа, которые не вызывают ее аварийного состояния еще до начала использования.

Сосредоточенные нагрузки могут способствовать возникновению продольных трещин, которые снижают несущую способность. Просчеты в проектировании и технологии производства могут вызывать полное разрушение создаваемого железобетонного изделия на стапеле. Предварительно напряженные конструкции требуют металлоемкой опалубки повышенной прочности, увеличенного расхода стали на закладные и арматуру.

Большие значения звуко– и теплопроводности требуют закладывания в тело камня компенсирующих материалов. Подобными железобетонными конструкциями обеспечивается более низкий порог огнестойкости (ввиду меньшей критической температуры нагрева преднапряженной арматурной стали) по сравнению с обычным железобетоном. На преднапряженную бетонную конструкцию критично воздействуют выщелачивание, растворы кислот и сульфатов, солей, приводящие к коррозии цементного камня, раскрытию трещин и коррозии арматуры. Это может приводить к резкому снижению несущей способности стали и внезапному хрупкому разрушению. Также к минусам стоит отнести значительный вес изделий.

Вернуться к оглавлению

Особенности армирования в зависимости от типа устройства фундамента

Когда закладывается фундамент дома очень важно соблюдать правила армирования монолитных железобетонных конструкций. Это позволит избежать множества дефектов и гарантирует долгий срок эксплуатации объекта. Согласно устройству железобетонных монолитных конструкций выделяют три типа фундамента.

Плитный фундамент

При его армировании применяется стержневая рифлёная арматура. Толщина железобетонной монолитной конструкции (плиты фундамента) зависит от количества этажей и материала, используемого при строительстве. Стандартный показатель 15—30 сантиметров.

Важно! Если масса здания невелика, то в железобетонной монолитной конструкции допускается использование сетки с сечением стержней от 6 до 10 сантиметров.

Качественное армирование плитного фундамента должно иметь два слоя. Нижняя и верхняя решётки соединяются посредством подпорок. Они формируют зазор нужного размера.

Главным отличием профессионального армирования железобетонных монолитных конструкций — является полное сокрытие всех элементов стального каркаса. При этом в плиточном фундаменте арматура не сваривается между собой, а вяжется посредством проволоки.

Ленточный фундамент

Устройство данной железобетонной монолитной конструкции состоит из решётки, которая размещается в верхней части и берёт на себе все нагрузки, связанные с растяжением.

Сваривать элементы каркаса крайне не рекомендуется — это уменьшит его прочность. При этом слой бетона, разделяющий стальные элементы и грунт должен быть не менее пяти сантиметров. Это защитит металл от коррозии.

В железобетонной монолитной конструкции очень важно соблюдать правильную дистанцию между продольными стержнями. Граничный показатель — 400 миллиметров. Поперечные элементы используются тогда, когда высота каркаса превышает 150 мм.

Дистанция между соседними стержнями в железобетонной монолитной конструкции не может превышать 25 миллиметров. Углы и соединения дополнительно усиливаются. Это позволяет придать фундаменту большую прочность.

Свайный фундамент

Данная технология используется при возведении строения на пучинистых грунтах. Оптимальная дистанция от ростверка до грунта 100—200 мм. Зазор позволяет создать воздушную подушку, что положительно влияет на утеплённость всего дома. К тому же воздушная подушка позволяет избежать образования на первом этаже сырости.

При создании свай используется бетон марки М300 и выше. Предварительно бурятся скважины, в которые вкладывается рубероид. Он также служит опалубкой. Каркас из арматуры опускается внутрь каждого отверстия.

Конструкция каркаса состоит из продольной рифленой арматуры. Сечение стержней от 12 до 14 мм. Крепление осуществляется посредством проволоки. Минимальный диаметр сваи — 250 мм.

Стены и перекрытия

Эти элементы также требуют особых правил армирования. В принципе они сходны с нормами создания фундаментов, но есть некоторые отличия:

  • Минимальный продольный диаметры арматуры в стене — 8 мм, максимальный шаг в длину 20 сантиметров, поперечный — 35 см. Сечение поперечной арматуры не менее 25% от сечения продольной.
  • Перекрытия. Диаметр арматуры определяется расчётными нагрузками. Минимальный показатель восемь миллиметров. Дистанция между стержнями не больше 20 мм.
  • При создании как стен, так и перекрытий допускается использование сетки.

· Арматуру в железобетонных конструкциях устанавливают для восприятия растягивающих напряжений или усиления сжатого бетона. В качестве арматуры применяют в основном сталь. В ряде случаев возможно применение и других материалов, например стеклопластика, обладающего высокой прочностью, химической стойкостью. Однако этот материал значительно дороже стали и его целесообразно применять лишь в конструкциях, к которым предъявляются специальные требования коррозионной стойкости, электроизолирующей способности и т.п.

Рис. 1.4. Расположение арматуры в изгибаемых (а, б) и сжатых (в) элементах: 1—рабочая арматура; 2—конструктивная арматура; 3—монтажная арматура.

Виды арматуры. По назначению различают арматуру рабочую, устанавливаемую по расчету, конструктивную и монтажную, применяемые из конструктивных и технологических соображений. Конструктивная арматура воспринимает не учитываемые расчетом усилия от усадки бетона, изменения температуры, равномерно распределяет усилия между отдельными стержнями и т. п.; монтажная обеспечивает проектное положение рабочей арматуры, объединяет ее в каркасы и т.п. (рис. 1.4).

По способу изготовления различают арматуру горячекатаную (получаемую способом проката) — стержневую и холоднотянутую (изготовляемую путем вытяжки в холодном состоянии) — проволочную.

По профилю поверхности различают арматурные стали гладкие и периодического профиля (рис. 1.5). Последние обладают лучшим сцеплением с бетоном и в настоящее время являются основной арматурой.

По способу применения арматуру делят на напрягаемую и ненапрягаемую.

Рис. 1.5. Арматура периодического профиля:

а, б — стержневая; в — проволочная

Горячекатаная и холоднотянутая арматура называется гибкой. Помимо нее в конструкциях в ряде случаев применяют жесткую (несущую) арматуру из прокатных или сварных двутавров, швеллеров, уголков и т. п.

Физико-механические свойства. Эти свойства арматуры зависят от химического состава, способа производства и обработки. В мягких сталях содержание углерода составляет обычно 0,2…0,4 %. Увеличение количества углерода приводит к повышению прочности при одновременном снижении деформативности и свариваемости. Изменение свойств сталей может быть достигнуто введением легирующих добавок. Марганец, хром повышают прочность без существенного снижения деформативности. Кремний, увеличивая прочность, ухудшает свариваемость.

Повышение прочности может быть достигнуто также термическим упрочнением и механической вытяжкой. При термическом упрочнении вначале осуществляют нагрев арматуры до 800…900°С и быстрое охлаждение, а затем нагрев до 300…400°С с постепенным охлаждением. При механическом вытягивании арматуры на 3…5 % вследствие структурных изменений кристаллической решетки — наклепа сталь упрочняется. При повторной вытяжке (нагрузке) диаграмма деформирования 4 будет отличаться от исходной (рис. 1.6), а предел текучести существенно повысится.

· Основные механические свойства сталей характеризуются диаграммой «напряжения — деформации», по­лучаемой путем испытания на растяжение стандартных образцов. Все арматурные стали по характеру диаграмм «σ — ε» подразделяются на (рис. 1.6): 1) стали с явно выраженной площадкой текучести (мягкие стали); 2) стали с неявно выраженной площадкой текучести (низколегированные, термически упрочненные стали); 3) стали с линейной зависимостью «σ — ε» почти до разрыва (высокопрочная проволока).

· Основные прочностные характеристики: для сталей вида 1 — физический предел текучести σy; для сталей видов 2 и 3 — условный предел теку­чести σ0,2, принимаемый равным напряжению, при котором остаточные деформации составляют 0,2 %, и условный предел упругости σ0,02, при котором остаточные деформации 0,02 %. Помимо этого характеристиками диаграмм являются предел прочности σsu (временное сопротивление) и предельное удлинение при разрыве, характеризующее пластические свойства стали. Малые предельные удлинения могут послужить причиной хрупкого обрыва арматуры под нагрузкой и разрушения конструкции; высокие пластические свойства сталей создают благоприятные условия для работы железобетонных конструкций (перераспределение усилий в статически неопределимых системах, при интенсивных динамических воздействиях и т. п.).

В зависимости от типа конструкций и условий эксплуатации наряду с основной характеристикой — диаграммой «σ — ε» в ряде случаев необходимо учитывать другие свойства арматурных сталей: свариваемость, реологические свойства, динамическое упрочнение и т. п.

Рис. 1.6. Диаграммы деформирования арматурных сталей:

1 — мягких: 2 — низколегированных и термически упрочненных;

3 — высокопрочной проволоки; 4 — механически упрочненных вытяжкой

· Под свариваемостью понимают способность арматуры к надежному соединению с помощью электросварки без трещин, каверн и других дефектов в зоне сварного шва. Хорошей свариваемостью обладают горячекатаные малоуглеродистые и низколегированные стали. Нельзя сваривать термически упрочненные стали (кроме специальных «свариваемых») и упрочненные вытяжкой, так как при сварке утрачивается эффект упрочнения.

· Реологические свойства характеризуются ползучестью и релаксацией. Ползучесть арматурных сталей проявляется лишь при больших напряжениях и высоких температурах. Более опасна релаксация—падение напряжений во времени при неизменной длине образца (отсутствии деформаций). Релаксация зависит от химического состава стали, технологии изготовления, напряжения, температуры и др. Она наиболее интенсивно протекает в первые часы, но может продолжаться длительное время. Учет ее важен при расчете предварительно напряженных конструкций.

· Усталостное разрушение наблюдается при действии многократно повторяющейся нагрузки при пониженном сопротивлении и носит хрупкий характер. Прочность при многократно повторной нагрузке (предел выносливости) арматуры зависит от числа повторений нагрузки n и характеристики цикла нагружения ρs.

· Динамическое упрочнение имеет место при действии кратковременных (t ≤ 1с) динамических нагрузок большой интенсивности (взрывных, сейсмических). Превышение динамического предела текучести σy,d над статическим σy объясняется запаздыванием пластических деформаций и зависит от химического состава стали и скорости деформации. Для мягких сталей σy,d = (1,2…1,3) σy.

Классификация арматуры. Все арматурные стали разделяют на классы, объединяющие стали с одинаковыми прочностными и деформативными свойствами. При этом к одному классу могут относиться стали, отличающиеся по химическому составу, т. е. разных марок.

· Стержневая арматура обозначается буквой А и римской цифрой и бывает: горячекатаная — гладкая класса A-I; периодического профиля классов А-II, А-III, A-IV, AV и А-VI; термически и термомеханически упрочненная — периодического профиля классов Ат-III, Aт-IV, Aт-V, Aт-VI и механически упрочненная класса А-III в.

Для дополнительной характеристики стержневой арматуры, необходимой при использовании ее в определенных условиях, к обозначениям классов вводятся индексы. Индекс «С» в обозначении термически и термомеханически упрочненной арматуры указывает на возможность соединения стержней с помощью сварки (At-IVC); «К» — на повышенную стойкость к коррозии под напряжением (Ат-IVK); «СК» — на возможность сварки и повышенную стойкость к коррозии под напряжением (Ат-VCK). Индекс «с» употребляется для арматуры, рекомендуемой к использованию в условиях низких температур, например класса Ас-II из стали марки 10ГТ.

Рис. 1.7. Арматурные изделия:

1 — пучок; 2 — анкер; 3 — вязальная проволока; 4 — коротыш

· Холоднотянутая проволочная арматура обозначается буквой В и римской цифрой и подразделяется на обыкновенную арматурную проволоку рифленую (периодического профиля) класса Вр-I и гладкую класса B-I, а также высокопрочную гладкую проволоку класса В-II и периодического профиля класса Вр-II.

Основные прочностные и деформативные характерис­тики различных арматурных сталей приведены в табл. 2.2. Сортамент стержней и проволочной арматуры дан на форзаце. Приведенные в сортаменте диаметры горячекатаной арматурной стали периодического профиля соответствуют номинальному диаметру равновеликих по площади круглых гладких стержней.

Арматурные изделия. Для ускорения производства работ ненапрягаемая гибкая арматура (отдельные стержни) объединяется в каркасы и сетки, в которых стержни в местах пересечений соединяются контактной точечной сваркой или вязкой. В отдельных случаях допускается применение дуговой сварки.

· Сварные каркасы (рис. 1.7, а) образуются из продольных и поперечных стержней. Продольные рабочие стержни устраивают в один или два ряда. Приварка продольных стержней к поперечным с одной стороны более технологична, чем с двух.

Плоские каркасы обычно объединяются в пространственные, которые должны обладать достаточной жесткостью для возможности складирования, транспортирования и сохранения проектного положения в форме.

При назначении диаметров продольных и поперечных стержней необходимо учитывать условия технологии сварки во избежание пережога более тонких стержней:

Диаметры продольных

 стержней, мм…………….   3…10 12…16 18…20 22 25…32 36…40

Наименьшие диаметры

поперечных стержней, мм .. 3          4         5       6      8       10

· Сварные сетки (ГОСТ 8478—81) выполняют из сталей классов B-I, Bp-I, A-I, A-II, А-III.

● Сварные сетки можно конструировать, предусматривая их последующее сгибание в одной плоскости на специальных станках. Сетки бывают плоские и рулонные, с продольной и поперечной рабочей арматурой. Рулонные сетки с продольной рабочей арматурой изготовляют при диаметре продольных стержней не более 5 мм (рис. 1.7,б). При диаметре более 5 мм применяют сетки с поперечной рабочей арматурой (рис. 1.7, в) или плоские. Максимальный диаметр поперечных стержней плоских и рулонных сеток 8 мм. Длина сетки в рулоне 50…100 м, поэтому для использования в конструкциях сетки разрезают по месту.

· Арматурные канаты и пучки. Армирование конструкции отдельными высокопрочными проволоками (вследствие их большого числа) трудоемко и часто приводит к излишнему развитию сечений элементов. В связи с этим проволоку укрупняют в канаты и пучки. Канаты (рис. 1.7, г) обычно изготовляют из 7 или 19 проволок одного диаметра (обозначение К-7 или К-19), навивая на центральную прямолинейную проволоку остальные в один или несколько слоев. Диаметр проволок канатов К-7 от 2 до 5 мм. Расчетные характеристики канатов приведены в табл. 2.2. Пучки состоят из параллельных высокопрочных проволок (14, 18, 24 шт.) или канатов (рис. 1.7,д). Пучки могут иметь по концам анкеры, а по длине обматываются мягкой проволокой.

Рис. 1.8. Соединения арматуры

Соединения арматуры . Для соединения арматурных стержней по длине в заводских условиях реко­мендуется применять контактную стыковую сварку (рис. 1.8, а) на специальных сварочных машинах. Для соединения встык при монтаже используют дуговую сварку. При этом в случае свариваемых стержней d ≥ 20 мм применяют дуговую ванную сварку в инвентарных (медных) формах (рис. 1.8, б). При d < 20 мм дуговую сварку осуществляют с накладками с четырьмя фланговыми швами (рис. 1.8, в). Допускается также сварка односторонними удлиненными швами (рис. 1.8, г). Стык рабочих стержней внахлестку без сварки применяют при d ≤ 36 мм (рис. 1.8, д) в тех местах, где прочность арматуры используется не полностью. Стыки внахлестку не допускаются в растянутых элементах. В местах стыка обязатель­но устанавливают дополнительные хомуты. Во всех случаях стыки следует делать вразбежку по длине элемента. Стыки внахлестку сварных сеток в рабочем направлении, так же как и стержней, должны иметь длину перепуска l>lan, определяемую по формуле (1.12). Длину нахлестки сетки в направлении распределительной арматуры принимают 50..100 мм в зависимости от диаметра.

Применение арматуры в железобетонных конструкциях. Выбор класса арматурных сталей производят в зависимости от типа конструкции, наличия предварительного напряжения, условий возведения и эксплуатации здания.

В качестве ненапрягаемой рабочей арматуры приме­няют в основном сталь класса A-III и проволоку класса Bp-I (B-I) в сетках и каркасах. Арматуру классов A-II и A-I допускают в качестве поперечной арматуры, а в качестве продольной — только при соответствующем обосновании (например, если прочность стали A-III не может быть полностью использована из-за чрезмерного раскрытия трещин и прогибов). Стержневую арматуру класса A-IV и выше применяют в качестве продольной арматуры только в вязаных каркасах.

В качестве напрягаемой рабочей арматуры при нормальных условиях эксплуатации и длине железобетонных элементов до 12 м используют преимущественно стаяли классов Ат-VI и Aт-V, а также В-II, Вр-II, К-7, К-19, A-IV, A-V, A-VI, А-IIIв, для элементов длиной более 12 м — главным образом арматурные канаты, пучки, проволоку классов В-II, Вр-II, а также свариваемую арма­туру A-VI, A-V, A-IV и А-IIIв.

Железобетон

Сцепление арматуры с бетоном. Сцепление арматуры с бетоном является одним из фундаментальных свойств железобетона, которое обеспечивает его существование как строительного материала. Сцепление обеспечивается: склеиванием геля с арматурой; трением, вызванным давлением от усадки бетона; зацеплением за бетон выступов и неровностей на поверхности арматуры. Выявление влияния каждого из этих факторов затруднительно и не имеет практического значения, так как они действуют совместно. Однако наибольшую роль в обеспечении сцепления (70…80 %) играет зацепление за бетон выступов и неровностей на поверхности арматуры (рис. 1.9, а).

При выдергивании стержня из бетона (рис. 1.9,6) усилия с арматуры на бетон передаются через касательные напряжения сцепления τbd, которые распределяются вдоль стержня неравномерно. Наибольшие их значения τbd,max действуют на некотором расстоянии от торца элемента и не зависят от длины заделки стержня в бетонеlan. Для оценки сцепления используют средние напряжения на длине заделки

Рис. 1.9. Сцепление арматуры с бетоном

Для обычных бетонов и гладкой арматуры τbd,m = 2,5…4 МПа, а для арматуры периодического профиля τbd,m ≈7 МПа. С увеличением прочности бетона τbd,m возрастает. Выражая продольное усилие через напряжение в арматуре (см. рис. 1.9, б), из формулы (1.10) получают

Из формулы (1.11) видно, что длина заделки, при которой обеспечивается сцепление (зона анкеровки), должна быть тем больше, чем выше прочность арматуры и диаметр стержня, и может быть уменьшена при увеличении τbd,m. Для уменьшения 1an (в целях экономии металла) следует ограничивать диаметр растянутой арматуры, повышать класс бетона и применять арматуру периодического профиля.

Нормами проектирования значение сцепления не устанавливается, но даются рекомендации по конструированию, которые обеспечивают надежное сцепление арматуры с бетоном.

Анкеровка арматуры в бетоне. Анкеровка — это закрепление концов арматуры внутри бетона или на его поверхности, способное воспринять определенное усилие. Анкеровка может осуществляться либо силами сцепления, либо специальными анкерными устройствами на концевых участках, либо теми и другими совместно.

Анкеровка арматуры периодического профиля обеспечивается силами сцепления. Анкерные устройства на концах такой арматуры применяют в редких случаях. Для гладкой круглой арматуры, наоборот, сцепление недостаточно, и устройство крюков на концах стержней или приварка поперечных стержней на концевых участках, как правило, обязательны.

Ненапрягаемую арматуру периодического профиля заводят за нормальное к продольной оси элемента сечение, в котором она учитывается с полным расчетным сопротивлением, на длину зоны анкеровки

где Δλan — коэффициент запаса; ωan— коэффициент условий работы; в соответствии с нормами lan,min = 20…25 см. Формула (1.12) — эмпирическая.

Усадка бетона в железобетонных конструкциях. Стальная арматура вследствие сцепления ее с бетоном является внутренней связью, препятствующей свободной усадке бетона при твердении на воздухе и свободному набуханию бетона при твердении в воде.

Стесненная деформация усадки бетона в железобетонном элементе приводит к возникновению начальных напряжений: растягивающих в бетоне, сжимающих в арматуре. При достаточно высоком содержании арматуры в бетоне элемента могут возникнуть усадочные трещины.

Усадке бетона в статически неопределимых железобетонных конструкциях препятствуют лишние связи. В таких системах усадка рассматривается как внешнее воздействие (подобное температурному), вызывающее появление усилий в элементах (см. рис. 11.4). Средняя деформация усадки равна 15·10-5, что равносильно понижению температуры на 15°С (так как коэффициент линейной температурной деформации αbt≈1·10-5). Это позволяет заменить расчет на действие усадки расчетом на температурное воздействие. Отрицательное влияние усадки в этом случае может быть снижено путем устройства деформационных швов, которые обычно совмещают с температурными и называют температурно-усадочными.

В предварительно напряженных элементах усадка бетона также оказывает отрицательное влияние, приводя к уменьшению предварительного напряжения в арматуре.

Ползучесть бетона в железобетонных конструкциях. Арматура в железобетонных конструкциях, являясь, как и при усадке, внутренней связью, препятствует свободной деформации ползучести в бетоне. Вследствие сцепления арматуры с бетоном при продолжительном действии нагрузки ползучесть приводит к перераспределению напряжений между арматурой и бетоном. С течением времени напряжения в бетоне уменьшаются, в арматуре элементов без предварительного напряжения возрастают. Этот процесс происходит непрерывно, пока деформации ползучести не достигнут своего предельного значения.

В зависимости от вида железобетонных конструкций и напряженного состояния ползучесть может оказывать положительное или отрицательное влияние на их работу. В коротких центрально сжатых элементах ползучесть оказывает положительное влияние, обеспечивая более полное использование прочностных свойств арматуры. В гибких сжатых элементах ползучесть вызывает увеличение начальных эксцентриситетов и снижение несущей способности. В изгибаемых элементах ползучесть приводит к увеличению прогибов, в предварительно напряженных железобетонных конструкциях — к потерям предварительного напряжения. В статически неопределимых системах ползучесть играет положительную роль, смягчая концентрацию напряжений и вызывая перераспределение усилий.

Коррозия железобетона и меры защиты от нее. Для обеспечения долговечности железобетонных конструкций необходимо принимать меры против развития коррозии бетона и арматуры. Коррозия бетона зависит от его прочности и плотности, свойств цемента и агрессивности среды. Коррозия арматуры вызывается недостаточным содержанием цемента или наличием в нем вредных добавок, чрезмерным раскрытием трещин, недостаточной толщиной защитного слоя. Коррозия арматуры может возникать независимо от коррозии бетона. Для уменьшения коррозии ограничивают агрессивность среды в процессе эксплуатации (отвод агрессивных вод, улучшение вентиляции помещений), применяют плотные бетоны на сульфатостойких и других специальных вяжущих, устраивают на поверхности бетона защитные покрытия, защитный слой необходимой трещины, ограничивают раскрытие трещин и т. д. При систематическом действии агрессивной среды производят расчет конструкций на это воздействие (см. § 15.5).

Защитный слой бетона. В железобетонных конструкциях арматуру следует располагать на некотором расстоянии от их наружной поверхности, чтобы вокруг нее образовался защитный слой. Защитный слой обеспечивает совместную работу арматуры с бетоном на стадиях изготовления, монтажа и эксплуатации конструкций, а также защиту арматуры от коррозии, высоких температур и других воздействий.

При назначении толщины защитного слоя учитывают вид и размеры конструкции, условия эксплуатации, диаметр и назначение арматуры (рабочая, распределительная) . Так, для продольной рабочей арматуры толщина защитного слоя должна быть не менее диаметра стержня и не менее: в плитах и стенках толщиной h < 100 мм — 10 мм; толщиной h ≥ 100 мм, а также балках и ребрах с h

Армирование – это совокупность прутьев, прокладываемых внутри стен, фундаментов, перекрытий и прочих элементов при монолитном строительстве. Так же часто армирующее соединение используется в процессе кладки из керамзитобетонных блоков.

Укладка армирующей сетки

Арматура железобетонных конструкций служит приданию прочности постройки. Ее функция принимать на себя растягивающее напряжение, а так же не допускать просадки и разрушения напряженных участков. В строительстве применяется стальная или стеклопластиковая арматура.

Назначение арматуры в железобетонных конструкциях

Монолитное строительство из железобетона приобретает все большую популярность. Такие конструкции возводятся гораздо быстрее, чем, к примеру, из керамзитобетонных блоков. К тому же, при монолитном строительстве можно выполнять любые формы и виды стен, опор, перекрытий и прочего без особых сложностей.

Бетон имеет массу преимуществ: высокая прочность, устойчивость к высоким и низким температурам, экологичность и прочее. Но есть и один существенный недостаток: высокий коэффициент  растягивающего натяжения может привести к быстрому разрушению конструкции. К примеру, закрепленное с двух концов бетонное перекрытие, прогибаясь под собственным весом, на верхней поверхности будет испытывать сживающую нагрузку, а на нижней — растягивающую.

Поэтому технология монолитного строительства предусматривает формирование арматурной сетки внутри бетонных фундаментов, стен, опор, перекрытий. Именно армирующее волокно снижает коэффициент натяжения на напряженных участках конструкции и делает постройку прочной.

Теоретически для армирования может использоваться любой материал, даже древесина. На практике же используется только композитная или стальная арматура.

Композитная арматура – это прутья, в основе структуры которых лежит углеродное или базальтовое волокно. Такое волокно обеспечивает не только прочность и антикоррозийные свойства, но и легкость. Однако такие изделия стараются использовать лишь в строительстве одноэтажных зданий.

Никакое волокно не может по прочности сравниться со сталью. Поэтому проектирование второго этажа уже предусматривает применение исключительно стальной арматуры. Это обусловлено так же и тем, что сталь имеет высокий коэффициент прочности и натяжения.

Арматурный каркас из композитной арматуры

Для вязания армирующей сетки в промышленных условиях, как правило, используют рифленые стальные прутья разного диаметра.

При произведении работ своими руками, особенно таких, как бетонирование фундамента, могут использоваться любые металлические элементы, которые можно связать между собой.

Армированный бетон полностью защищен от натяжения и разрывов на напряженных участках.
к меню ↑

Проектирование железобетонных конструкций

Прежде, чем приступать к любому строительству, нужно предварительно составить проект. Проектирование позволяет тщательно рассчитать все нюансы будущего строительства, учитывая техническое руководство в виде СНиП.

При разработке проекта учитываются особенности грунта, климатические условия, минимальный и максимальный коэффициент натяжения, порядок и технология строительных работ.

Несущая система любого здания состоит из фундамента, подпорных стен и перекрытий.

Читайте также: какие бывают станки для резки арматуры, и как они работают?

Главная задача проектировщика – рассчитать коэффициент нагрузок на все несущие конструкции. Коэффициент нагрузки напряженных зон постройки может быть минимальный,  и максимальный. Именно от него будет зависеть количество и особенности материалов для производства железобетона.

Главное пособие для проектировщика – это государственные правила СНиП – руководство по строительству жилых и нежилых зданий. Этот документ постоянно обновляется, исходя из новых материалов и способов производства.

Схема устройства и армирования ленточного мелкозаглубленного фундамента

Проектирование несущих подпорных конструкций, согласно СНиП производится по следующим параметрам:

  • коэффициент нагрузки на фундамент, стены, перекрытия;
  • амплитуда вибрации подпорных конструкций и верхних перекрытий;
  • устойчивость основания;
  • коэффициент натяжения и сопротивляемости процессу разрушения.

к меню ↑

Виды арматуры

Способы классификации арматуры в изделиях из железобетона могут быть разными. Для производства железобетонных конструкции используются разные типы арматуры с различными маркировками. Виды арматуры определяются исходя из ее назначения, сечения, способа производства и т.д.

Классификация по назначению:

  • рабочая арматура принимает на себя основные нагрузки напряженных участков;
  • конструктивная принимает на себя коэффициент натяжения;
  • монтажная используется для производства монтажа рабочей и конструктивной арматуры в единый каркас;
  • анкерная выполняет функцию закладных деталей для создания перемычек, откосов.

Классификация по ориентации внутри стен, полов, перекрытий, опор бывают такие виды арматуры:

data-ad-client=»ca-pub-8514915293567855″

data-ad-slot=»1955705077″>

  • продольная – принимает на себя коэффициент натяжения и не допускает вертикального разрушения стены, перемычек и подпорных конструкций;
  • поперечная – служит для закрепления напряженных зон, выполняет функцию перемычек между продольными прутьями, препятствует появлению сколов и горизонтальных трещин.

Схема укладки арматурного каркаса для углов ленточного фундамента

Классификация по внешнему виду:

  • гладкая;
  • рифленая (периодического профиля). Рифленые виды арматурных прутьев значительно улучшают сцепку с бетоном и делает конструкцию более прочной, поэтому ее нужно использовать для производства напряженных зон. Периодический профиль прутьев может быть серповидным, кольцевидным или смешанным.

к меню ↑

Классы прочности

Существуют старый и новый способы маркировки согласно СНиП.

  • отечественный ГОСТ 5781-82 предусматривает маркировку A-I, A-II, A-III, A-IV, A-V, A-VI;
  • международные стандарты устанавливают правила маркировки А240, А300, А400, А600, А800, А1000.

На способ производства и правила использования способ маркировки не влияет. Так маркировка A-I соответствует А240, A-II соответствует А300 и т.д.

Чем выше класс арматуры, тем выше ее прочность. Изделия класса A-I гладкостенные и используются, как правило, для вязки арматурной сетки. В строительстве же стен, опор, фундаментов, перемычек, перекрытий и т.д. применяют рифленые изделия класса A-II и выше.

Термически уплотненная арматура, согласно международным стандартам, обозначается «Ат». Ее изготовление начинается с марки А400 и выше. В конце маркировки могут быть добавлены и другие литеры. Так литера «К» означает коррозийную устойчивость, литера «С» означает пригодность для сваривания, литера  «В» говорит об уплотнении вытяжкой и т.д.

Пособие по армированию и государственное руководство СНиП руководство выдвигают требования к армированию железобетонных конструкций.

Защитный слой бетона для арматуры должен обеспечивать:

  • совместную работу прутьев с бетоном;
  • анкеровку прутьев и возможность их стыковки;
  • защищать металлическую конструкцию от воздействия внешней (в том числе агрессивной) среды;
  • огнеупорность конструкции.

Толщина защитного слоя определяется исходя из размера и роли арматуры (рабочая или конструктивная). Так же учитывается тип конструкции (стены, фундамент, перекрытия и т.д.) Минимальный защитный слой, согласно СНиП не должен быть меньше, чем толщина прутьев и меньше 10 мм.

Заливка бетоном арматурного каркаса в опалубке

Расстояние между арматурными стержнями определяется функциями, которые должен выполнять армированный бетон.

  • взаимодействие стержней и бетона;
  • возможность анкеровать и стыковать стержни;
  • придание зданию максимальной прочности и долговечности.

Минимальный отступ между прутьями – 25 мм, или толщина арматуры. В стесненных условиях допускается установка стержней пучками. Тогда расстояние между ними считается от общего диаметра сечения пучка.
к меню ↑

Виды армирования

Можно выделить две основных технологии армирования.

  1. Традиционное вязание металлической арматурной сетки. Бетонирование с использованием металлических стержней широко применяется на строительном рынке при возведении монолитных железобетонных конструкций. Оно позволяет производить полноценное армирование бетонного пола, фундамента, стен, перекрытий, подпорных конструкций и прочего.
  2. Дисперсное армирование бетона – относительно новый способ, предусматривающий армирование стальной или другой фиброй. Этот способ широко используется в странах Европы, однако в России фиброволокно применяют, в основном, для производства бетонных полов. Если арматурные прутья снижают количество усадочных трещин лишь на 6 %, то металлическая фибра – на 20%, а полимерное фиброволокно на 60%.

Но основное преимущество диспесного армирования в снижении затрат труда. Стальное, базальтовое или стекловолоконное фиброволокно добавляется непосредственно в раствор и не требует укладки и вязки каких-либо элементов. Главный и определяющий недостаток – высокая стоимость такого способа.

Фрагмент бетонной плиты армированной стекловолокном по методу дисперсного армирования

Правила продольного армирования:

Согласно правилам СНиП армирование подстилающих слоев и набетонок зависит от назначения арматуры, назначения конструкции и гибкости элемента. Минимальный допустимый процент армировки – 0,1 %. При этом расстояние между стержнями должно быть не менее двух диаметров прута и не более 400 мм.

Поперечное армирование же, подразумевает, что шаг поперечных перемычек, согласно правилам СНиП, в напряженных зонах должен быть не менее половины сечения стержня и не более 300 мм.

В не напряженных зонах максимальное расстояние между прутьями увеличивается до 13 диаметров, но не более 500 мм.

Армирование элементов монолитных железобетонных зданий требует предварительно тщательно изучить руководство СНиП. Это позволит избежать разрушения фундамента, стен, опор, перекрытий и других подпорных конструкций.
к меню ↑

Правильное армирование мелкозаглубленного ленточного фундамента (видео)

Статьи по теме: